Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
J Vet Intern Med ; 38(2): 987-994, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38363021

RESUMEN

BACKGROUND: Diagnosis of pancreatitis is based on clinical signs, pancreatic lipase immunoreactivity (cPLI), and abdominal ultrasonography (AUS). Diagnostic discrepancies exist between test results which might be related to differences in the timeline for resolution of these abnormalities after pancreatic injury. HYPOTHESIS/OBJECTIVES: To evaluate disease severity, ultrasonographic findings, and serum biomarkers of pancreatitis in dogs over a period of 28-days. ANIMALS: Sixteen client-owned dogs with a clinical suspicion for acute pancreatitis based on history/physical examination, an abnormal SNAP cPLI, and ultrasonographic evidence of pancreatitis. METHODS: Prospective observational study. Clinical severity (modified clinical activity index [MCAI]), cPLI, C-reactive protein (CRP), and AUS were evaluated at days 0, 2, 7, and 28. Owner assessed overall health (OH) was noted. Dogs were stratified into baseline cPLI ≥400 µg/L vs <400 µg/L groups for reporting. RESULTS: The median CRP, MCAI, and OH were 111.9 mg/L, 10, and 4/10 respectively in the cPLI ≥400 µg/L group. The median CRP, MCAI, and OH were 58.0 mg/L, 6, and 6/10 respectively in the cPLI <400 µg/L group. None of these variables were significantly different between groups. Most dogs (4/5) in the cPLI <400 µg/L group had a history of suspected pancreatitis (ie, suspect acute on chronic disease). cPLI and MCAI rapidly decreased in dogs with a baseline cPLI ≥400 µg/L, whereas sonographic evidence of pancreatitis persisted for a longer time period. CONCLUSIONS AND CLINICAL IMPORTANCE: Ultrasonographic evidence of pancreatitis in the absence of overt clinical or biochemical abnormalities might represent a resolving injury rather than active disease.


Asunto(s)
Enfermedades de los Perros , Pancreatitis , Animales , Perros , Enfermedad Aguda , Proteína C-Reactiva , Enfermedades de los Perros/diagnóstico por imagen , Lipasa , Páncreas/diagnóstico por imagen , Pancreatitis/diagnóstico por imagen , Pancreatitis/veterinaria , Ultrasonografía/veterinaria
2.
Cell ; 186(26): 5826-5839.e18, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38101409

RESUMEN

Super-enhancers are compound regulatory elements that control expression of key cell identity genes. They recruit high levels of tissue-specific transcription factors and co-activators such as the Mediator complex and contact target gene promoters with high frequency. Most super-enhancers contain multiple constituent regulatory elements, but it is unclear whether these elements have distinct roles in activating target gene expression. Here, by rebuilding the endogenous multipartite α-globin super-enhancer, we show that it contains bioinformatically equivalent but functionally distinct element types: classical enhancers and facilitator elements. Facilitators have no intrinsic enhancer activity, yet in their absence, classical enhancers are unable to fully upregulate their target genes. Without facilitators, classical enhancers exhibit reduced Mediator recruitment, enhancer RNA transcription, and enhancer-promoter interactions. Facilitators are interchangeable but display functional hierarchy based on their position within a multipartite enhancer. Facilitators thus play an important role in potentiating the activity of classical enhancers and ensuring robust activation of target genes.


Asunto(s)
Regulación de la Expresión Génica , Súper Potenciadores , Transcripción Genética , Globinas alfa , Elementos de Facilitación Genéticos , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Globinas alfa/genética
3.
Cell ; 186(24): 5220-5236.e16, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37944511

RESUMEN

The Sc2.0 project is building a eukaryotic synthetic genome from scratch. A major milestone has been achieved with all individual Sc2.0 chromosomes assembled. Here, we describe the consolidation of multiple synthetic chromosomes using advanced endoreduplication intercrossing with tRNA expression cassettes to generate a strain with 6.5 synthetic chromosomes. The 3D chromosome organization and transcript isoform profiles were evaluated using Hi-C and long-read direct RNA sequencing. We developed CRISPR Directed Biallelic URA3-assisted Genome Scan, or "CRISPR D-BUGS," to map phenotypic variants caused by specific designer modifications, known as "bugs." We first fine-mapped a bug in synthetic chromosome II (synII) and then discovered a combinatorial interaction associated with synIII and synX, revealing an unexpected genetic interaction that links transcriptional regulation, inositol metabolism, and tRNASerCGA abundance. Finally, to expedite consolidation, we employed chromosome substitution to incorporate the largest chromosome (synIV), thereby consolidating >50% of the Sc2.0 genome in one strain.


Asunto(s)
Cromosomas Artificiales de Levadura , Genoma Fúngico , Saccharomyces cerevisiae , Secuencia de Bases , Cromosomas/genética , Saccharomyces cerevisiae/genética , Biología Sintética
4.
Mol Cell ; 83(23): 4424-4437.e5, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37944526

RESUMEN

Whether synthetic genomes can power life has attracted broad interest in the synthetic biology field. Here, we report de novo synthesis of the largest eukaryotic chromosome thus far, synIV, a 1,454,621-bp yeast chromosome resulting from extensive genome streamlining and modification. We developed megachunk assembly combined with a hierarchical integration strategy, which significantly increased the accuracy and flexibility of synthetic chromosome construction. Besides the drastic sequence changes, we further manipulated the 3D structure of synIV to explore spatial gene regulation. Surprisingly, we found few gene expression changes, suggesting that positioning inside the yeast nucleoplasm plays a minor role in gene regulation. Lastly, we tethered synIV to the inner nuclear membrane via its hundreds of loxPsym sites and observed transcriptional repression of the entire chromosome, demonstrating chromosome-wide transcription manipulation without changing the DNA sequences. Our manipulation of the spatial structure of synIV sheds light on higher-order architectural design of the synthetic genomes.


Asunto(s)
Núcleo Celular , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Cromosomas/genética , Genoma Fúngico , Biología Sintética/métodos
5.
Cell Genom ; 3(11): 100439, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38020967

RESUMEN

We designed and synthesized synI, which is ∼21.6% shorter than native chrI, the smallest chromosome in Saccharomyces cerevisiae. SynI was designed for attachment to another synthetic chromosome due to concerns surrounding potential instability and karyotype imbalance and is now attached to synIII, yielding the first synthetic yeast fusion chromosome. Additional fusion chromosomes were constructed to study nuclear function. ChrIII-I and chrIX-III-I fusion chromosomes have twisted structures, which depend on silencing protein Sir3. As a smaller chromosome, chrI also faces special challenges in assuring meiotic crossovers required for efficient homolog disjunction. Centromere deletions into fusion chromosomes revealed opposing effects of core centromeres and pericentromeres in modulating deposition of the crossover-promoting protein Red1. These effects extend over 100 kb and promote disproportionate Red1 enrichment, and thus crossover potential, on small chromosomes like chrI. These findings reveal the power of synthetic genomics to uncover new biology and deconvolute complex biological systems.

6.
Cell Genom ; 3(11): 100364, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38020968

RESUMEN

Aneuploidy compromises genomic stability, often leading to embryo inviability, and is frequently associated with tumorigenesis and aging. Different aneuploid chromosome stoichiometries lead to distinct transcriptomic and phenotypic changes, making it helpful to study aneuploidy in tightly controlled genetic backgrounds. By deploying the engineered SCRaMbLE (synthetic chromosome rearrangement and modification by loxP-mediated evolution) system to the newly synthesized megabase Sc2.0 chromosome VII (synVII), we constructed a synthetic disomic yeast and screened hundreds of SCRaMbLEd derivatives with diverse chromosomal rearrangements. Phenotypic characterization and multi-omics analysis revealed that fitness defects associated with aneuploidy could be restored by (1) removing most of the chromosome content or (2) modifying specific regions in the duplicated chromosome. These findings indicate that both chromosome copy number and specific chromosomal regions contribute to the aneuploidy-related phenotypes, and the synthetic chromosome resource opens new paradigms in studying aneuploidy.

7.
Cell Genom ; 3(11): 100435, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38020970

RESUMEN

Chromosome-level design-build-test-learn cycles (chrDBTLs) allow systematic combinatorial reconfiguration of chromosomes with ease. Here, we established chrDBTL with a redesigned synthetic Saccharomyces cerevisiae chromosome XV, synXV. We designed and built synXV to harbor strategically inserted features, modified elements, and synonymously recoded genes throughout the chromosome. Based on the recoded chromosome, we developed a method to enable chrDBTL: CRISPR-Cas9-mediated mitotic recombination with endoreduplication (CRIMiRE). CRIMiRE allowed the creation of customized wild-type/synthetic combinations, accelerating genotype-phenotype mapping and synthetic chromosome redesign. We also leveraged synXV as a "build-to-learn" model organism for translation studies by ribosome profiling. We conducted a locus-to-locus comparison of ribosome occupancy between synXV and the wild-type chromosome, providing insight into the effects of codon changes and redesigned features on translation dynamics in vivo. Overall, we established synXV as a versatile reconfigurable system that advances chrDBTL for understanding biological mechanisms and engineering strains.

8.
Cell Genom ; 3(11): 100418, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38020971

RESUMEN

We describe construction of the synthetic yeast chromosome XI (synXI) and reveal the effects of redesign at non-coding DNA elements. The 660-kb synthetic yeast genome project (Sc2.0) chromosome was assembled from synthesized DNA fragments before CRISPR-based methods were used in a process of bug discovery, redesign, and chromosome repair, including precise compaction of 200 kb of repeat sequence. Repaired defects were related to poor centromere function and mitochondrial health and were associated with modifications to non-coding regions. As part of the Sc2.0 design, loxPsym sequences for Cre-mediated recombination are inserted between most genes. Using the GAP1 locus from chromosome XI, we show that these sites can facilitate induced extrachromosomal circular DNA (eccDNA) formation, allowing direct study of the effects and propagation of these important molecules. Construction and characterization of synXI contributes to our understanding of non-coding DNA elements, provides a useful tool for eccDNA study, and will inform future synthetic genome design.

9.
Cell Genom ; 3(11): 100419, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38020974

RESUMEN

We describe the complete synthesis, assembly, debugging, and characterization of a synthetic 404,963 bp chromosome, synIX (synthetic chromosome IX). Combined chromosome construction methods were used to synthesize and integrate its left arm (synIXL) into a strain containing previously described synIXR. We identified and resolved a bug affecting expression of EST3, a crucial gene for telomerase function, producing a synIX strain with near wild-type fitness. To facilitate future synthetic chromosome consolidation and increase flexibility of chromosome transfer between distinct strains, we combined chromoduction, a method to transfer a whole chromosome between two strains, with conditional centromere destabilization to substitute a chromosome of interest for its native counterpart. Both steps of this chromosome substitution method were efficient. We observed that wild-type II tended to co-transfer with synIX and was co-destabilized with wild-type IX, suggesting a potential gene dosage compensation relationship between these chromosomes.

10.
Cell Genom ; 3(11): 100379, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38020977

RESUMEN

Synthetic chromosome engineering is a complex process due to the need to identify and repair growth defects and deal with combinatorial gene essentiality when rearranging chromosomes. To alleviate these issues, we have demonstrated novel approaches for repairing and rearranging synthetic Saccharomyces cerevisiae genomes. We have designed, constructed, and restored wild-type fitness to a synthetic 753,096-bp version of S. cerevisiae chromosome XIV as part of the Synthetic Yeast Genome project. In parallel to the use of rational engineering approaches to restore wild-type fitness, we used adaptive laboratory evolution to generate a general growth-defect-suppressor rearrangement in the form of increased TAR1 copy number. We also extended the utility of the synthetic chromosome recombination and modification by loxPsym-mediated evolution (SCRaMbLE) system by engineering synthetic-wild-type tetraploid hybrid strains that buffer against essential gene loss, highlighting the plasticity of the S. cerevisiae genome in the presence of rational and non-rational modifications.

11.
Environ Health Insights ; 16: 11786302221112917, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35899223

RESUMEN

Diversity in the environmental health sciences (EHS) workforce is crucial in providing culturally sensitive services to diverse communities. This may be influenced by academic faculty training a diverse student body in the field of environmental health. This study aimed to characterize the diversity of students and faculty in EHS programs accredited by the National Environmental Health Science and Protection Accreditation Council (EHAC). A retrospective analysis was conducted on secondary data obtained from annual surveys administered to program directors in EHAC-accredited academic programs that included both undergraduate and graduate EHS degrees. The database covered surveys on gender and race that were conducted by EHAC for 12 academic years spanning 2009-2010 to 2020-2021. Results show most students (undergraduate and graduate) were female (54.4% and 52.1%, respectively) and white (61.0% and 50.7%, respectively). Increasing trends were observed over the last 12 years (2009-2021) in female undergraduate (from 53.7% to 59.8%) and graduate (from 47.1% to 60.3%) students and in non-white undergraduate students (from 40.0% to 48.2%). Most faculty (teaching in undergraduate and graduate programs) were male (64.4% and 64.3%, respectively) and white (77.9% and 92.1%, respectively). Increasing trends were observed from 2009 to 2021 in female faculty teaching undergraduate (from 27.7% to 42.2%) and graduate (from 31.3% to 42.1%) students. Native American, Alaska Native, Native Hawaiian, and Pacific Islander are consistently the most underrepresented racial groups in both undergraduate and graduate students and faculty. This study provides baseline data on the diversity of students and faculty in EHAC-accredited programs, which is important in informing future research and efforts to increase such diversity. Gender and racial disparity in EHS students and faculty needs to be addressed to provide necessary support to women and non-White constituents by institutional change in culture through active recruitment and by stronger collaboration between professional organizations and minority groups.

12.
Science ; 375(6584): 1000-1005, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35239377

RESUMEN

Sequence features of genes and their flanking regulatory regions are determinants of RNA transcript isoform expression and have been used as context-independent plug-and-play modules in synthetic biology. However, genetic context-including the adjacent transcriptional environment-also influences transcript isoform expression levels and boundaries. We used synthetic yeast strains with stochastically repositioned genes to systematically disentangle the effects of sequence and context. Profiling 120 million full-length transcript molecules across 612 genomic perturbations, we observed sequence-independent alterations to gene expression levels and transcript isoform boundaries that were influenced by neighboring transcription. We identified features of transcriptional context that could predict these alterations and used these features to engineer a synthetic circuit where transcript length was controlled by neighboring transcription. This demonstrates how positional context can be leveraged in synthetic genome engineering.


Asunto(s)
Genoma Fúngico , ARN de Hongos/genética , ARN Mensajero/genética , Saccharomyces cerevisiae/genética , Transcripción Genética , Transcriptoma , Regiones no Traducidas 3' , Secuencia de Bases , Reordenamiento Génico , Variación Genética , ARN de Hongos/química , ARN de Hongos/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , RNA-Seq , Análisis de Secuencia de ARN
13.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33649239

RESUMEN

Routine rewriting of loci associated with human traits and diseases would facilitate their functional analysis. However, existing DNA integration approaches are limited in terms of scalability and portability across genomic loci and cellular contexts. We describe Big-IN, a versatile platform for targeted integration of large DNAs into mammalian cells. CRISPR/Cas9-mediated targeting of a landing pad enables subsequent recombinase-mediated delivery of variant payloads and efficient positive/negative selection for correct clones in mammalian stem cells. We demonstrate integration of constructs up to 143 kb, and an approach for one-step scarless delivery. We developed a staged pipeline combining PCR genotyping and targeted capture sequencing for economical and comprehensive verification of engineered stem cells. Our approach should enable combinatorial interrogation of genomic functional elements and systematic locus-scale analysis of genome function.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sitios Genéticos , Genoma Humano , Células Madre Embrionarias Humanas , Células Madre Embrionarias de Ratones , Animales , Línea Celular , Humanos , Ratones
14.
Genetics ; 218(1)2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33742653

RESUMEN

Design and large-scale synthesis of DNA has been applied to the functional study of viral and microbial genomes. New and expanded technology development is required to unlock the transformative potential of such bottom-up approaches to the study of larger mammalian genomes. Two major challenges include assembling and delivering long DNA sequences. Here, we describe a workflow for de novo DNA assembly and delivery that enables functional evaluation of mammalian genes on the length scale of 100 kilobase pairs (kb). The DNA assembly step is supported by an integrated robotic workcell. We demonstrate assembly of the 101 kb human HPRT1 gene in yeast from 3 kb building blocks, precision delivery of the resulting construct to mouse embryonic stem cells, and subsequent expression of the human protein from its full-length human gene in mouse cells. This workflow provides a framework for mammalian genome writing. We envision utility in producing designer variants of human genes linked to disease and their delivery and functional analysis in cell culture or animal models.


Asunto(s)
Clonación Molecular/métodos , Ingeniería Genética/métodos , Animales , ADN/genética , Técnicas de Transferencia de Gen/veterinaria , Técnicas Genéticas/veterinaria , Genoma/genética , Genómica/métodos , Humanos , Hipoxantina Fosforribosiltransferasa/genética , Ratones , Análisis de Secuencia de ADN/métodos , Flujo de Trabajo
15.
Annu Rev Biochem ; 89: 77-101, 2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-32569517

RESUMEN

DNA synthesis technology has progressed to the point that it is now practical to synthesize entire genomes. Quite a variety of methods have been developed, first to synthesize single genes but ultimately to massively edit or write from scratch entire genomes. Synthetic genomes can essentially be clones of native sequences, but this approach does not teach us much new biology. The ability to endow genomes with novel properties offers special promise for addressing questions not easily approachable with conventional gene-at-a-time methods. These include questions about evolution and about how genomes are fundamentally wired informationally, metabolically, and genetically. The techniques and technologies relating to how to design, build, and deliver big DNA at the genome scale are reviewed here. A fuller understanding of these principles may someday lead to the ability to truly design genomes from scratch.


Asunto(s)
ADN/genética , Edición Génica/métodos , Técnicas de Transferencia de Gen , Genes Sintéticos , Ingeniería Genética/métodos , Genoma , Sistemas CRISPR-Cas , ADN/química , ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Oligonucleótidos/síntesis química , Oligonucleótidos/metabolismo , Plásmidos/química , Plásmidos/metabolismo , Poliovirus/genética , Poliovirus/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Esferoplastos/genética , Esferoplastos/metabolismo
17.
Nat Commun ; 10(1): 839, 2019 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-30765692

RESUMEN

The original version of this Article omitted a declaration from the Competing Interests statement, which should have included the following: 'J.D.B. is a founder and Director of the following: Neochromosome, Inc., the Center of Excellence for Engineering Biology, and CDI Labs, Inc. and serves on the Scientific Advisory Board of the following: Modern Meadow, Inc., Recombinetics, Inc., and Sample6, Inc.'. This has now been corrected in both the PDF and HTML versions of the Article.

18.
Nat Commun ; 9(1): 1931, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29789561

RESUMEN

The synthetic yeast genome constructed by the International Synthetic Yeast Sc2.0 consortium adds thousands of loxPsym recombination sites to all 16 redesigned chromosomes, allowing the shuffling of Sc2.0 chromosome parts by the Cre-loxP recombination system thereby enabling genome evolution experiments. Here, we present L-SCRaMbLE, a light-controlled Cre recombinase for use in the yeast Saccharomyces cerevisiae. L-SCRaMbLE allows tight regulation of recombinase activity with up to 179-fold induction upon exposure to red light. The extent of recombination depends on induction time and concentration of the chromophore phycocyanobilin (PCB), which can be easily adjusted. The tool presented here provides improved recombination control over the previously reported estradiol-dependent SCRaMbLE induction system, mediating a larger variety of possible recombination events in SCRaMbLE-ing a reporter plasmid. Thereby, L-SCRaMbLE boosts the potential for further customization and provides a facile application for use in the S. cerevisiae genome re-engineering project Sc2.0 or in other recombination-based systems.


Asunto(s)
Edición Génica/métodos , Genoma Fúngico , Integrasas/genética , Ficobilinas/metabolismo , Ficocianina/metabolismo , Recombinación Genética/efectos de la radiación , Saccharomyces cerevisiae/genética , Células Clonales , Expresión Génica , Genes Sintéticos , Ingeniería Genética/métodos , Integrasas/metabolismo , Luz , Plásmidos/química , Plásmidos/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de la radiación , Selección Genética
19.
Nat Commun ; 9(1): 1933, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29789567

RESUMEN

Compatibility between host cells and heterologous pathways is a challenge for constructing organisms with high productivity or gain of function. Designer yeast cells incorporating the Synthetic Chromosome Rearrangement and Modification by LoxP-mediated Evolution (SCRaMbLE) system provide a platform for generating genotype diversity. Here we construct a genetic AND gate to enable precise control of the SCRaMbLE method to generate synthetic haploid and diploid yeast with desired phenotypes. The yield of carotenoids is increased to 1.5-fold by SCRaMbLEing haploid strains and we determine that the deletion of YEL013W is responsible for the increase. Based on the SCRaMbLEing in diploid strains, we develop a strategy called Multiplex SCRaMbLE Iterative Cycling (MuSIC) to increase the production of carotenoids up to 38.8-fold through 5 iterative cycles of SCRaMbLE. This strategy is potentially a powerful tool for increasing the production of bio-based chemicals and for mining deep knowledge.


Asunto(s)
Carotenoides/biosíntesis , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Ingeniería Metabólica/métodos , Ploidias , Saccharomyces cerevisiae/genética , Secuencia de Bases , Cromosomas Fúngicos/química , Células Clonales , Eliminación de Gen , Genes Sintéticos , Integrasas/genética , Integrasas/metabolismo , Redes y Vías Metabólicas/genética , Fenotipo , Plásmidos/química , Plásmidos/metabolismo , Recombinación Genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/deficiencia , Proteínas de Transporte Vesicular/genética
20.
Nat Commun ; 9(1): 1934, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29789590

RESUMEN

SCRaMbLE (Synthetic Chromosome Rearrangement and Modification by LoxP-mediated Evolution) is a genome restructuring technique that can be used in synthetic genomes such as that of Sc2.0, the synthetic yeast genome, which contains hundreds to thousands of strategically positioned loxPsym sites. SCRaMbLE has been used to induce rearrangements in yeast strains harboring one or more synthetic chromosomes, as well as plasmid DNA in vitro and in vivo. Here we describe a collection of heterozygous diploid strains produced by mating haploid semisynthetic Sc2.0 strains to haploid native parental strains. We subsequently demonstrate that such heterozygous diploid strains are more robust to the effects of SCRaMbLE than haploid semisynthetic strains, rapidly improve rationally selected phenotypes in SCRaMbLEd heterozygous diploids, and establish that multiple sets of independent genomic rearrangements are able to lead to similar phenotype enhancements. Finally, we show that heterozygous diploid SCRaMbLE can also be carried out in interspecies hybrid strains.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Genes del Tipo Sexual de los Hongos , Ingeniería Genética/métodos , Genoma Fúngico , Ploidias , Saccharomyces cerevisiae/genética , Cromosomas Fúngicos/química , Células Clonales , Genes Sintéticos , Heterocigoto , Integrasas/genética , Integrasas/metabolismo , Redes y Vías Metabólicas/genética , Fenotipo , Plásmidos/química , Plásmidos/metabolismo , Recombinación Genética , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...